Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Experimental Neurobiology ; : 404-413, 2019.
Article in English | WPRIM | ID: wpr-763765

ABSTRACT

Cognitive impairments and motor dysfunction are commonly observed behavioral phenotypes in genetic animal models of neurodegenerative diseases. JNPL3 transgenic mice expressing human P301L-mutant tau display motor disturbances with age- and gene dose-dependent development of neurofibrillary tangles, suggesting that tau pathology causes neurodegeneration associated with motor behavioral abnormalities. Although gait ignition failure (GIF), a syndrome marked by difficulty in initiating locomotion, has been described in patients with certain forms of tauopathies, transgenic mouse models mirroring human GIF syndrome have yet to be reported. Using the open field and balance beam tests, here we discovered that JNPL3 homozygous mice exhibit a marked delay of movement initiation. The elevated plus maze excluded the possibility that hesitation to start in JNPL3 mice was caused by enhanced levels of anxiety. Considering the normal gait ignition in rTg4510 mice expressing the same mutant tau in the forebrain, GIF in JNPL3 mice seems to arise from abnormal tau deposition in the hindbrain areas involved in locomotor initiation. Accordingly, immunohistochemistry revealed highly phosphorylated paired helical filament tau in JNPL3 brainstem areas associated with gait initiation. Together, these findings demonstrate a novel behavioral phenotype of impaired gait initiation in JNPL3 mice and underscore the value of this mouse line as a tool to study the neural mechanisms and potential treatments for human GIF syndrome.


Subject(s)
Animals , Humans , Mice , Anxiety , Brain Stem , Cognition Disorders , Gait , Immunohistochemistry , Locomotion , Mice, Transgenic , Models, Animal , Neurodegenerative Diseases , Neurofibrillary Tangles , Pathology , Phenotype , Prosencephalon , Rhombencephalon , Tauopathies
2.
Biomolecules & Therapeutics ; : 511-518, 2017.
Article in English | WPRIM | ID: wpr-38706

ABSTRACT

Ultraviolet (UV) irradiation is a relevant environment factor to induce cellular senescence and photoaging. Both autophagy- and silent information regulator T1 (SIRT1)-dependent pathways are critical cellular processes of not only maintaining normal cellular functions, but also protecting cellular senescence in skin exposed to UV irradiation. In the present studies, we investigated whether modulation of autophagy induction using a novel synthetic SIRT1 activator, heptasodium hexacarboxymethyl dipeptide-12 (named as Aquatide), suppresses the UVB irradiation-induced skin aging. Treatment with Aquatide directly activates SIRT1 and stimulates autophagy induction in cultured human dermal fibroblasts. Next, we found that Aquatide-mediated activation of SIRT1 increases autophagy induction via deacetylation of forkhead box class O (FOXO) 1. Finally, UVB irradiation-induced cellular senescence measured by SA-β-gal staining was significantly decreased in cells treated with Aquatide in parallel to occurring SIRT1 activation-dependent autophagy. Together, Aquatide modulates autophagy through SIRT1 activation, contributing to suppression of skin aging caused by UV irradiation.


Subject(s)
Humans , Autophagy , Cellular Senescence , Fibroblasts , Skin , Skin Aging
3.
Journal of Korean Medical Science ; : 100-106, 2006.
Article in English | WPRIM | ID: wpr-71345

ABSTRACT

The purpose of this study was to demonstrate the cellular localization of cyclooxygenase-2 (COX-2) and caveolin-3 (Cav-3) in primarily cultured rat chondrocytes. In normal rat chondrocytes, we observed relatively high levels of Cav-3 and a very low level of COX-2 mRNA and protein. Upon treating the chondrocytes with 5 microM of CdCl2 (Cd) for 6 hr, the expressions of COX-2 mRNA and protein were increased with the decreased Cav-3 mRNA and protein expressions. The detergent insoluble caveolae-rich membranous fractions that were isolated from the rat chondrocytes and treated with Cd contained the both proteins of both COX-2 and Cav-3 in a same fraction. The immuno-precipitation experiments showed complex formation between the COX-2 and Cav-3 in the rat chondrocytes. Purified COX-2 with glutathione S-transferase-fused COX-2 also showed complex formation with Cav-3. Confocal and electron microscopy also demonstrated the co-localization of COX-2 and Cav-3 in the plasma membrane. The results from our current study show that COX-2 and Cav-3 are co-localized in the caveolae of the plasma membrane, and they form a protein-protein complex. The co-localization of COX-2 with Cav-3 in the caveolae suggests that the caveolins might play an important role for regulating the function of COX-2.


Subject(s)
Animals , Rats , Animals, Newborn , Blotting, Western , Cadmium Chloride/pharmacology , Caveolae/drug effects , Caveolin 3/genetics , Cell Membrane/drug effects , Cells, Cultured , Chondrocytes/cytology , Cyclooxygenase 2/genetics , Gene Expression , Immunoprecipitation , Microscopy, Confocal , Microscopy, Electron , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL